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The intensity distribution of X-ray diffraction topographs in Laue cases was measured for Si perfect 
crystals by microdensitometry with an accuracy of 1% at the maximum intensity. Both section and 
traverse topographs taken with {220} and {440} reflexions were studied, but the section topographs were 
the main interest. A least-squares analysis shows that the observed intensities can be represented well by the 
sum of two terms: the dynamical term based on the spherical wave theory and the kinematical term which 
has a form of attenuation because of the normal absorption. The latter term, however, is very small and its 
ratio to the former, evaluated at zero depth, was about 10 -3 in the perfect crystals available. 

1. Introduction 

The Pendell6sung phenomenon is one of the funda- 
mental subjects of dynamical diffraction in nearly 
perfect crystals. F o r  X-rays, the Pendell6sung fringes 
of Laue cases were observed by Kato & Lang (1959) 
and theoretically treated by regarding the incident 
wave as a spherical wave (Kato, 1960, 1968a, b). The 
theoretical predictions were confirmed as far as the 
geometric aspects of the fringes were concerned (Hat- 
tori & Kato, 1966; Homma, Ando & Kato, 1966). 
Accurate and absolute measurements of the structure 
factors were successfully performed on the basis of 
these studies (Tanemura & Kato, 1972; Aldred & Hart, 
1973a, b). The method was also applied to neutrons to 
determine the scattering amplitude (Shull & Ober- 
teuffer, 1972). 

Nevertheless, as the next stage of the investigation 
it is desirable to examine the extent to which the theory 
can correctly predict the intensity distribution of the 
Pendell6sung fringes. For electrons, it is believed that 
the simple elastic scattering theory based on the two- 
beam approximation cannot satisfactorily describe 
the intensity distribution of the equal-thickness fringes 
(Uyeda & Nonoyama,  1965; Cowley, 1975). For X-rays, 
no detailed study has been reported on this subject, 
except for that of Batterman & Patel (1968). They 
measured the spatial distribution of the diffracted 
intensity with a wide incident beam for Ge. Their main 
interest, however, was the fringe positions for deter- 
mining the structure factors. 

The principal aim of this paper is to examine the 
spherical wave theory for perfect crystals. For this 
reason we used Si single crystals which were, as far as 
possible, perfect and confined our interest mainly to 
the section topographs in symmetrical Laue cases, 
which are simplest from the theoretical viewpoint. 

In conclusion, the spherical wave theory is reason- 
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ably correct. Experimentally, however, it turned out 
that a small term due to kinematical diffraction has to 
be introduced to describe the intensity distribution of 
the topographs. The latter subject, which is connected 
with X-ray characterization of real crystals, is also 
dealt with to some extent in this study. 

2. Intensity formulae 

The results obtained from the dynamical theory are 
summarized (see, for example, Azaroff, 1974). The 
following formulae are applicable to absorbing crys- 
tals, unpolarized X-rays and any geometric conditions 
in Laue cases, unless stated otherwise. 

Section topographs 
The intensity distribution in the reflecting pl~ane due 

to a spherical wave is given by 

Ig(X,Z) = Alfl[ 2 exp ( -  #oZ/COS 0B) 
x [[J0(fl0l z +[cos 20Bl21J0(lcos 20Blfl()12], (1) 

21 

// 

Fig. 1. Section topographs. The coordinate systems and the slits 
used are shown. 
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where A is a constant and the argument fl~ of the zero- 
order Bessel function Jo is given by 

=(z 2 sin E O B - x  2 cos 2 0B) 1/2 (2) 

e 2 22 (fgf_g) 1/2 
f l -  mc 2 v sin 208 (3) 

The other notations used are: 
x and z: The coordinates normal and parallel to the 

net plane, the origin being taken at the entrance point 
(see Fig. 1). 

/to: The normal linear absorption coefficient. 
08: The Bragg angle. 
fg: The structure factor of the gth order, including 

the dispersion effects. 
2: The wavelength. 
v: The unit-cell volume. 
e,m,c: The physical constants in the conventional 

usage. 
When the asymptotic expression of the Bessel func- 

tion is used for the large argument, equation (1) 
becomes 

Ig(x,z) 

Alfll -- ~ exp (--poZ/COS OB) 

7 

cosh (2fli~)+ Icos 2081 cosh (2flilcos 20BI0[, (4) + 
. . . . I  

where the superscripts r and i denote the real and 
imaginary parts. This formula can be used for thick 
crystals. 

Traverse topographs 
By integrating equation (1) with respect to the x 

coordinate, one obtains the expression for the traverse 
topograph for the symmetrical Laue case with respect 
to the entrance surface. This expression is sufficiently 
accurate, unless fli/flr is greater than 0" 1. The variable 
z can be replaced by the distance t of the observation 
point from the entrance surface in this particular case. 
The formula is given by 

7~ 
Rg(t) = ~ A exp - (#ot/CO.S 0B) 

x { W(2 sin OBflrt)+ W(2 sin 0BIcos 20nlflrt) 

+ [lo(2 sin OBflit) - 1] 

+ [cos 20BI [Io(2 sin 0Blcos 20Bl f f t ) -  1]}, (5) 

where W(~) is the Waller integral defined by 

(6) 

and Io is the modified Bessel function of the zeroth 
order. 

Equations (1), (4) and (5) are the ideal intensity 

distributions for an infinitesimal slit. In practice, how- 
ever, one needs to use a slit of finite size both for 
taking X-ray topographs and for the densitometry 
described below. Some convolution procedures, there- 
fore, are required to obtain the intensity curves which 
can be directly compared with experiment. The details 
are given in Appendix A. 

3. Photographic characteristics of 
nuclear emulsion plates 

In the present experiment it is intended to measure the 
intensity distribution of two-dimensional diffraction 
patterns with high spatial resolution. For this purpose, 
the photographic method of measuring X-ray intensity 
seems most adequate and reliable. Unfortunately, 
however, the characteristics of nuclear plates and X-ray 
radiations have not been well studied. Here, we are 
concerned with (i) the linearity between the photogra- 
phic darkness (D) and the total energy (E) recorded per 
unit area, and (ii) the reciprocal relation between the 
intensity (I) and the exposure time (T). These two 
points were particularly examined for the combina- 
tion of the Ag Kel line and the Ilford L4 plate with an 
emulsion 100/~m thick.* 

The conventional apparatus for traverse topographs 
was used and the intensity of the incident beam was 
reduced stepwise by inserting A1 sheets in its path. 
Each sheet has a transmission ratio of 0.72_+0.01 
(determined by a counter method). Two diaphragms 
were put in the path of the Bragg reflected beam to 
eliminate the scattered rays from the A1 sheets and the 
specimen. 

For a wedge-shaped specimen of Si, we obtained the 
traverse topographs illustrated in Fig. 2. Under the 
present conditions, it can be assumed that the recorded 
intensities along each line of the Pendell6sung fringes 
are reduced step by step by the transmission ratio of a 
single A1 sheet. The darkness D was measured by means 
of a standard microdensitometer along a line per- 
pendicular to the fringes. The estimated densitometry 
error is 0.03 on the absolute scale. Fig. 3 shows a 
graph of D vs I. Here, the intensity I is on an arbitrary 
scale but with the fixed ratio of 0-72 between the 
neighbouring plots, and the ordinate is an effective 
darkness D e = D - D d ,  in which D~ is the darkness 
corresponding to the unexposed part of the photo- 
graphic plate. The plotting sequence specified by the 
numerical labels refers to the different exposure times. 
The results indicate that the linearity between De and 
I holds up to a De value of 3.5. 

Because all experiments were performed under the 
same conditions of X-ray source operation, one can 
assume that the intensity of the incident beam on the 

* The photographic procedure was: (a) Development in Kodak 
D19b at 0°C for 30 min, and at increasing temperature to 8°C from 
0°C for an additional 30 min. (b) Stopping in acetic acid at 8 °C for 
30 min. (c) Fixing (NaHSOz: 30 g, Na2S203:300 g in 11 solution) for 
3 h. (d) Rinsing in water for 10 h. 
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Fig. 2. The traverse topograph used for examining the photo- 
graphic characteristics of nuclear emulsion plates. 
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A1 sheets must be identical. Then, E = I x T is the total 
energy per unit area. Fig. 4 shows the relation between 
De and E, which was obtained from all the data in 
Fig. 3. Again, the linearity between E and De holds. This 
implies that the photographic reciprocity is satisfied 
over the range studied. In the present experiment, the 
exposure times cover the range 6 to 60 h. 

4. Experiments without a monochromator 

The two wedge-shaped specimens were prepared from 
a dislocation-free single crystal of Si. It was grown by 
the Czochralski method and the pulling direction was 
[111]. The wedge angles of the specimens were about 
12 °, and the surfaces were nearly perpendicular to the 
growth direction. Both section andtraverse topographs 
taken with 220, 2--20, 440 and 440 reflexions were 
studied. The symmetrical Laue conditions were satis- 
fied within the accuracy of 2 ° . 

The photographic darkness was measured with the 
same microdensitometer as was used for examining 
the characteristics of the nuclear plate. In the case of 
traverse topographs, the darkness distribution was 
measured along a line perpendicular to the fringes. In 

the case of section topographs the darkness distribu- 
tion was measured along the bisector (Z) of the wedge- 
shaped pattern (see Fig. 1). 

As mentioned above, for comparing theory with 
experiment, one needs to correct the effects of the slit 
size. The sizes used in practice are listed in Table 1. 
The corresponding corrections are listed in Table 2. In 
principle, the effects of the vertical divergence of the 
X-rays have to be corrected• In the present experi- 
mental conditions, however, a single point of the 
specimen was projected onto the recording plate with a 
vertical distance less than 5/~m, so that the correction 
was regarded as negligible. 

Table 1. Slit size (#m) 
(a) X-ray topographs (2s in Fig. 1) 

Section Traverse 
220} 35 100 
440} 40 100 

(b) Densitometry 
Slit size Section Traverse 

2a 20 20 
2b 30 100 

• 5 

• t, 

3 

2 

1 

Fig. 3. Linearity between the effective darkness De and the X-ray 
intensity I. 

E 
Fig. 4. Reciprocity of E, (intensity) x (exposure time), with respect to 

the darkness. 

Table 2. The slit-size correction 
Fringe order Uncorrected Corrected 

6 (max.) 3.00 2.37 
(min.) 0-47 1.13 

10 (max.) 1-13 1.02 
(min.) 0"63 0-72 

20 (min.) 0.10 0.15 
(max.) 0.56 0.52 

25 (min.) 0"07 0"09 
(max.) 0.41 0.39 

30 (min.) 0.11 0"12 
(max.) 0-26 0-26 

Section topographs 
The topographs obtained were standard (e.g. Figs. 

4-31 in Azaroff, 1974). Examples of the darkness 
curves (D curves) are shown in Fig. 5(a) and (b). The 
zero value of the darkness was always set at the dark- 
ness level De, corresponding to the unexposed part of 
the nuclear plate (el § 3). An appreciable background 
was observed in a region surrounding the topograph. 
Presumably this is due to fluorescence and Compton 
scatterings. It was practically homogeneous in the 
vicinity of the topographs, except at the tip where 
photographic halation was inevitable. The homogene- 
ous part was about 0-02 for {220} reflexions and 0"08 
for {440} reflexions. For this reason, we subtract these 
constant amounts Ds from the D curves. The corrected 
darkness values are denoted by Do. 

In Fig. 5 the darkness in the A region exceeds the 
value D0=3"0. We deliberately omitted the several 
fringes in this region to ensure linearity of D vs I and 
avoid the effects of halation. The irregular be- 

A C  3 3 A - 1 1 "  
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haviour (fading) of the fringes denoted by arrows is due 
to X-ray polarization. This has been thoroughly 
discussed by Hattori, Kuriyama & Kato (1965) and 
Hart & Lang (1965). 

The darkness curves were analysed by least squares. 
The following observation equations were assumed: 

Case I D~ ) = AD~ ) (7) 

Case II D~ )=AD~ )+ B (8) 

Case III D~)= AD~ ) + BD~ ). (9) 

Here A and B are adjustable parameters. The super- 
script (j) indicates the order of the maxima and minima 
of the D curves. When the extremes were appreciable 
in the fading region, they were treated in the same way 
as the extremes in the regular fringe region. Dr is the 
theoretical value calculated from equation (1) or (4) 
with the slit-size correction described in Appendix A. 
The numerical values of the structure factors and the 
normal absorption coefficient/~o used in the expres- 
sions of Ig are given in Appendix B. DB is a trial func- 
tion to obtain the best fit in the least-squares analysis. 

In case I, the residuals were larger than the densito- 
metric errors of 0.03, and were negative for the maxima 
of the fringes, and positive for the minima. In case II, 
the residuals were comparable to 0.03 but there was a 
systematic tendency that occurs more frequently for 
the negative residuals in the thicker region. The best 
fit was obtained by taking 

DB = exp --/tot/COS On (10) 

in case III. The parameters A and B were 114.8_+ 1.2 
and 0-13 + 0"01 respectively, for example, in the (220) 
case for specimen I. The r.m.s, of the residuals was 0-026 
in this case. 

Fig. 6(a) and (b) illustrates how the observed D 
curves (full lines) fit the theoretical curves (dotted 
lines). Here, the horizontal scale is linearly adjusted. 
The half-dotted lines show the term BDB in each case. 
In Table 3 the B/A ratios are listed for the two samples. 

Traverse topographs 
A similar analysis was performed for the D curves of 

the traverse topographs. In this case, one can measure 
the intensity from the first fringe without affecting the 
D vs I linearity or the halation. The best fit is obtained 
when equation (8) is assumed as the observation equa- 
tion. Fig. 7 shows the final results corresponding to the 
section topographs of Fig. 6. The positional shifting 
of the lower-order fringes is due to the rounding of the 
wedge-shape so that the discrepancy is trivial as far as 
the diffracted intensities are concerned. The B/A ratios 
are also listed in Table 3. 

Adopting the observation equation (8) seems in- 
consistent with adopting equation (10) for DB in the case 
of section topographs. Actually, Kc~ 2 and general rays 
may contribute to the background more in the 
traverse experiments in which the wider beam has to 
be used. Moreover, one cannot guarantee the homo- 

geneity of the background Ds inside the topographs. 
For these reasons the arguments for the inconsistency 
mentioned above are meaningless. The treatment of 
traverse topographs is to be regarded as a purely 
phenomenological. 

De 

3 -  

A 

~ ~  2 2 0  

(a) 

3 ~~ 440  

(b) 

Fig. 5. The observed darkness curves. (a) 220 reflexion. (b) 440 re- 
flexion. 

Do SECTION ( 2 2 0 )  SECTION (220) 
O B S E R V A T I O N  

--_~--~ C A L C U L A T I O N  

. . . . . .  
0.5 1.0 1.5 t Imm) 

(a) 

DO' SECTION (3~ ~ 0) SECTION (3~ ~ 0) 
OBSERVATION 

" '~ '~  CALCULATION 

0.5 1.0 1.5 t (mm) 

(b) 
Fig. 6. Section topographs. Comparison between the observed and 

theoretical darkness curves. (a) (_520) section. (b) (743,0) section. 



M. WADA AND N. KATO 165 

(a) Section topographs 
Table 3. The ratio of B/A 

Sample I Sample II 
Without With Without With 

monochromator monochromator monochromator monochromator 
220 1.2 x 10- 3 0.7 x 10- 3 0"8 x 10- 3 0-5 x 10- 3 
2)-0 0"7x 10 - 3  0 " 5 ×  10 - 3  0"SX 10 -3 0"4X 10 -3 
440 2"8 × 10 - 3  1"2 X 10 - 3  3"4 X 10 - 3  l'0x 10 - 3  
74~0 3"9x 10 - 3  l ' 6 x  10 - 3  3 "6X 10 - 3  1"5 X 10 - 3  

(b) Traverse topographs for sample II, without monochromator 
220 0"10 440 
2--20 0-11 440 

0"23 
0"16 

5. Experiments with a monochromator 

The general rays and the Kal radiation propagating 
with an off-Bragg condition may contribute to the 
topographs, especially to the background, even in the 
case of section topographs. In fact, the angular 
divergence of the incident beam without a monochrom- 
ator was nearly one minute of arc, which is narrow 
enough to separate Kal and Ka2 lines but much larger 
than the angular range of the Bragg reflexion, e.g. 
AOB=2"I" for {220} reflexions. In order to clear up 
this ambiguity, the same section topograph experi- 
ments were repeated with the monochromatized 
incident beam. 

An asymmetric monochromator using the 111 re- 
fexion was made from a Si perfect crystal in order to 
obtain a beam of narrow width. The reflexion arrange- 
ment for the specimen was the (+ ,  +)  setting to 
eliminate the contribution of general rays from the 
Bragg-reflected intensity of the specimen. The charac- 
teristics of the monochromatized beam were as follows: 
beam width: 12 pm, calculated angular width: 7". The 
beam width is sufficiently narrow for our purposes. 

Do ~ TRAVERSE (220) 
- -  OBSERVATION 
....... CALCULATION 

~ ~ _  BACKGROUND 

0 0.5 1.0 t (ram) 

D0 t TRAVERSE ( 4 4 0 ~  h OBSERVATION 
I! ....... CALCULATION 
I ROUND 

, 
o o.s 1.o t (rnm) 

Fig. 7. Traverse topographs. Comparison between the observed and 
theoretical darkness curves. (a) (220) traverse. (b) (440) traverse. 

The angular width, on the other hand, is enough to 
cover the angular width AO~ of the specimen. Thus, 
the incident beam still has the character of a spherical 
wave, as far as we are concerned, with the intensity 
along the net plane. 

The procedures for obtaining D curves and the least- 
squares analysis were identical to those in § 4.* As 
to fitting the observed darkness to the theoretical 
values at the extremes, the results were very similar to 
those in the experiments without the monochromator. 
The B/A ratios which are listed in Table 3, however, are 
slightly decreased. For {220} reflexions the ratios were 
about one-half of the values in the experiment without 
the monochromator, and were nearly one third for 
{440} reflexions. 

6. Discussion and conclusions 

The Pendell6sung fringes 
As far as the behaviour of the fringes is concerned, 

the observed intensity distributions are in agreement 
with the theoretical predictions from equation (1) or 
equations (4) and (5) within the experimental error of 
0.03 on the D scale, i.e. 1% of the maximum intensity 
on the intensity scale. This implies that the spherical 
wave theory is satisfactory for understanding Pendel- 
16sung fringes in Laue cases, regarding not only their 
geometric character but also the intensity distribution. 
Also, the prevailing considerations on X-ray polariza- 
tion in the dynamical theory are adequate within the 
accuracy of the present experiments. It is worth 
emphasizing that the intensity distribution of the 
topographs is more complex than the conventional 
rocking curves so that the present experiment gives a 
more critical justification of the dynamical theories 
for perfect crystals. In this connexion, it is important 
that the present least-squares method includes only 
two adjusting parameters, A and B. One can conclude, 
therefore, that the numerical values of the physical 
constants listed in Appendix B are reasonably correct. 

* The parallel and perpendicular components of X-ray polariza- 
tion must have the same intensity in the total reflexion range of the 
monochromator. Unlike experiments on the integrated intensity, 
therefore, equation (1) has to be used for the present double-crystal 
experiments. 
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The background 
Experimentally, it is concluded that a background 

term has to be added to explain completely the inten- 
sity distributions of section and traverse topographs. 
For the reason mentioned at the end of § 4, however, 
we shall only discuss the section topographs. 

The slight but appreciable difference in the ratios of 
B/A for the experiments with and without the mono- 
chromator suggests that the background is due to the 
off-Bragg waves. This implies that the background 
originates from the region along the incident beam and 
diffracts in the direction of the Bragg reflexion in a 
kinematical sense. In fact, the form of the best fitting 
function of De confirms this interpretation. 

It is significant that the change in B/A is rather small 
in the experiments with and without the mono- 
chromator. Although the angular width of the incident 
beam was reduced to about one tenth by the mono- 
chromator, the reduction of B/A is only of the order of 
one half or one third. This implies that the background 
arises from the incident beam which nearly satisfies the 
Bragg condition. General X-rays are definitely ir- 
relevant to the background. 

The model of the crystal waves inside the crystal is 
illustrated in Fig. 8. According to the dynamical theory, 
that part of the incident waves satisfying the Bragg 
condition propagates within the Borrmann fan starting 
from the entrance point E. The remainder, which do not 
practically satisfy the Bragg condition, propagate 
along the two edges of the Borrmann fan. The waves 
propagating in the direction of the incident beam may 
encounter a distorted region where the waves satisfy 
the Bragg condition and are diffracted in a kinematical 
sense. Thus, if one observes the crystal waves at a point 
P on the exit surface, the wave fields consist of two 
parts: the dynamical wave and the kinematical wave 
originating from the region D along the incident beam. 

Obviously, one may also imagine the scattered 
waves of the dynamical wave and the rescattering of 
the kinematical wave mentioned above. The principle 
of the Born approximation, however, means that the 
contributions of such waves at point P must be small 
unless the lattice distortions are very large. Thus, the 
above-mentioned model, based on the Born approx- 
imation combined with the ray consideration, is 
reasonable. 

Within the scope of the present experiments it is 
difficult to state conclusively what the physical origin 
of the background is. Since, however, the magnitude of 
B/A is larger in the case of {440} reflexions than in the 
case of {220} reflexions, it is suggested that the back- 
ground is caused by lattice distortions of the displace- 
ment type, such as thermal vibrations or the distortion 
surrounding a cluster of point defects. In this respect, it 
is worthwhile referring to the recent work of Patel 
(1975), in which he observed small humps on both sides 
of the tails of the rocking curves in Si single crystals, 
when the specimens were properly heat-treated. Our 
specimens would be similar to the specimens of his 

P 

Fig. 8. The model of the wave fields. The double arrow (EP): the 
dynamical wave. The single arrow (EDP): the kinematical wave. 

experiment before heat treatment. The topographic 
experiments are complementary to the rocking-curve 
experiments. 

In conclusion, it has been experimentally confirmed 
that the diffracted intensity for nearly perfect crystals 
is well described by the dynamical diffraction term 
with a smaller kinematical diffraction term. The former 
is given by equation (1) or (4) for section topographs. 
The latter has the functional form of equation (10) 
which is expected from the normal absorption along 
the kinematical beam paths. 

The authors wish to thank Mr Katagawa for his 
help, for the computer program for the least-squares 
analysis and for the slit corrections. 

APPENDIX A 

Correction of the slit size 

The present considerations are limited to the symmet- 
rical Laue case which has a special geometrical condi- 
tion that the bisector plane of the wedge crystal is set 
vertically. Then, the intensity distributions of the dif- 
fraction pattern and of the reflexion plane inside the 
crystal must be mutually proportional, provided that 
the coordinates (X,Z) of the diffraction pattern and 
(x, z) of the reflexion plane are connected by the linear 
transformation: 

X=xcosOB, Z=½zcot W/2. (Ala, b) 
Here, 0n is the Bragg angle and W the wedge angle of 
the crystal. The coordinate systems and the slit con- 
figurations are illustrated in Fig. 1. 

First we shall consider the correction due to the slit 
placed in front of the specimen while taking topo- 
graphs. Let Ig(x,z) be the intensity distribution in the 
reflexion plane [given by either equations (1) or (2)], 
and Jg(X, Z) be the intensity distribution of the diffrac- 
tion pattern taken with a vertical slit of width 2s. Then, 
the relation between Jg and Ig is 

Jg(X,Z)=(1/2s) Ig[cl(X-u),c2Z]du, (A2) 
- - S  

where cl and cz represent sec 0B and 2 tan W/2 respec- 
tively. 
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Next, we shall consider the correction due to the 
rectangular slit employed in the densitometry, its size 
being 2a and 2b in the directions of Z and X respec- 
tively. Assuming that the photographic darkness is 
proportional to the averaged intensity taken over the 
slit area, one obtains the theoretical darkness Dr, 
which has to be compared with Do mentioned in the 
text, in the form 

DT(X,Z) 

f i  dwfbbdvf f  = K Ig[cl(X + v -  u), c2(Z + w)]du. 

-~ (A3) 

Here, the proportional factor includes the factors 1/2a, 
1/2b and 1/2s. 

The first integral with respect to w is evaluated 
approximately by the use of Simpson's formula 
(Jeffreys & Jeffreys, 1959) 

a 

L(x,Z) = Ig[x, c2(Z + w)]dw (A4a) 
--fl 

,,, a {Ig[x, c2(Z +a)]+4Ig(x, c2Z) - 3  
+ Ig[x, c2(Z-a)]}. (A4b) 

This approximation is justified because the variation 
oflg along z is relatively smooth. The remaining double 
integral can be reduced to a single integral by the use 
of the transformation 

p = v - u ,  q=v+u (A5a, b) 

In fact, inserting the relation (A4a) into equation (A3): 

DT(X,Z)=K L[cl(X +p), Z] ~ dpdq, (A6) 

where the integral domain is the rectangle composed 
of the domains A, B and C illustrated in Fig. 9, and 
O(u, v)/c~(p, q) is the Jacobian of the transformation (A5), 
which is equal to 1/2. The integration of q can be 
performed irrespective of the functional form of L. 
When s is larger than or equal to b:* 

* In the reverse case, the roles of b and s have to be interchanged 
in equation (.47). 

Pxx• i ¢/1t q 

2e 
Fig. 9. The coordinate transformation for the slit-size correction. 

~ s + b  

DT(X,Z)=K L[c1(X+p)Z][(b+s)-p]dp 
d s - b  

s - b 

+ 2bg L[Cl(X + p),Z]dp 
b - s  

f 
b - s  

+K L[cl(X+p),Z][(b+s)+p]dp. 
-(b+s) (A7) 

Each term corresponds to the integrals in the domains 
A, B and C respectively. The integration was again 
performed numerically with Simpson's method. For 
our purpose, DT(O,Z) is significant. 

In the case of traverse topographs the function Ig, 
and consequently L, is independent of x. Therefore, 
the theoretical darkness curve is simply given by 

D r(X, Z) = (4bs)K L(Z), 
where L(Z) is the same as the expression (A4b) but the 
variable x can be suppressed. 

In Table 2, the corrected and uncorrected values of 
the theoretical darkness of(220) section topographs are 
compared. Up to the fringes of the 24th order, the 
amounts of the correction exceed the error in the 
densitometry. The correction, therefore, is very signi- 
ficant in the present experiment. 

APPENDIX B 

The structure factors and the linear 
absorption coefficient 

Since Si has a centre of symmetry, one can write 
r • i (FgF_g) 1/2 = Fg + IFg, 

neglecting the higher terms, where the suffixes r and i 
indicate the real and imaginary parts. For the real part, 
the following experimental values were adopted 
(Tanemura & Kato, 1972): Fg(220)=67-7, Fg(440)= 
43.2. 

The imaginary part Fg is composed of three terms in 
the form 

Fg= F~(PH) + fg(CO)+ Fg(TDS), 

where PH, CO and TDS are the abbreviations for 
photoelectric effect, Compton scattering and thermal 
diffuse scattering. In the present experiments, the 
theoretical values adopted are given in Table 4. For 
Fg(PH), the dipole, dipole-octupole and quadrupole 
terms are taken into account. The evaluation of 
F~4o(TDS) was not easy so that the value of F~2o w a s  
tentatively used. In fact, no significant difference was 
noticed in the value of DT even when F~,4o(TDS) was 
neglected. 

For the normal absorption coefficient, the following 
experimental value of Hildebrandt, Stephenson & 
Wagenfeld (1973) was used: #o = 7.32 cm-x. 
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Table 4. Theoretical values adopted for F~ 
F~ao(PH) (") =0"340 (A_ polarization) 

=0.339 (11 polarization) 
F~.4o(PH) ("~ =0.309 (_1_ polarization) 

=0-302 (11 polarization) 
F~20(CO) (b' ¢) =0"009 
F~4o(CO)(b,c) = 0"004 
F~zo(TDS)(b. c) = 0"007 
F~.4o(TDS) (~) =0"007 

(a) Hildebrandt, Stephenson & Wagenfeld (1975). (b) Sano, 
Ohtaka & Ohtsuki (1969). (c) Giardina & Merlini (1973). (d) Tenta- 
tively assumed. 
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Orientations and Twinning in the Structural Transformation Aragonite-type to Calcite-like 
in Potassium Nitrate Crystals 
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The structural transformation K N O  3 I112s.°c I was studied by X-ray diffraction and microscopy. Orienta- 
tions measured by diffraction were (a) [10i],l[[010]n, (110),l[(001)ll and (b) [01T],ll[010],, (11])~[[(100)u 
(rhombohedral indices, Z = 4 for I). Two orientations measured by optical and surface analysis agree with 
two previously found for CaCO3 in glaucophane schists. Transformed specimens recrystallized at 180°C. 
There is some optical evidence for twinning. The symmetry options of relation (b) would allow (110)~ 
transformation twinning which could simulate mechanical twinning. The possibility of crystallographically 
controlled mechanisms is discussed. 

The transformation of the aragonite to the calcite 
structure is of interest both for its possible combina- 
tion of reconstructive and shear-like components in 
the mechanism of this change of first coordination, and 
as an indicator in low-grade metamorphism in rocks. 
This structure change is well known in calcium car- 
bonate: a very similar transformation occurs in potas- 
sium nitrate, KNO3. Below 128°C potassium nitrate 
has a closely pseudo-hexagonal aragonite structure (II), 
space group Pmcn, Z - - 4  (Edwards, 1931; Nimmo & 

* Present address: South Australian Institute of Technology, 
Pooraka, SA 5098, Australia. 

Lucas, 1973), and at higher temperatures the high- 
NaNO 3 structure (I), space group R3m, in which there 
is considerable thermal oscillation of the N O j  ions 
(Shinnaka, 1962; Stromme, 1969). Though this differs 
from calcite in the relative mean orientations of the 
anions the difference must become less significant at 
higher temperatures because of the increased amplitude 
of oscillation of the CO 2- ions. The morphological 
subcell of calcite is a true cell of KNO3 I, which grows 
with similar rhombohedral morphology (Kennedy, 
1972). This cell has Z = 4 ,  a=7"04 A, ~=  100"8 °. The 
volume change in KNO3 is 0"7}o. 

In the aragonite structure the cations are arranged 


